Linear Regression
损失函数: \(J(\theta) = \frac{1}{2}\sum(Wx+b-y)^2\)
Ridge
损失函数增加了L2惩罚项: \(J(\theta) = \frac{1}{2}\sum(Wx+b-y)^2 + \lambda ||W||_2\)
Lasso
损失函数增加了L1惩罚项: \(J(\theta) = \frac{1}{2}\sum(Wx+b-y)^2 + \lambda ||W||_1\)
ElasticNet
损失函数: \(J(\theta) = \frac{1}{2}\sum(Wx+b-y)^2 + \alpha\lambda ||W||_1 + \frac{1}{2}\alpha(1-\lambda)||W||_2\)